…seems like life gave me a call to action…
Introduction
Every time you connect to the Internet, you are likely to be using elliptic curves to generate the encryption key that you and the server are using. This is a unique key, and that builds on the Diffie-Hellman method, but uses the beauty of elliptic curves.
Elliptic curves should be understood by everyone who uses digital assets. Bitcoin, Ethereum would not be possible without it. Elliptic curve cryptography is a type of asymmetric cryptography that uses elliptic curves to create mathematically linked public & private keys. Your private key is what gives you access and privacy to your digital assets while the public key is the proof to anyone in the system to see. The curve used by Bitcoin and Ethereum is called secp256k1, defined by:
y^2=x^3+7.
The points along the curve is used to derive the values of public and private keys. Public-key cryptography is useful because it satisfies 2 conditions:
- It is computationally impossible to derive a private key from its public key.
- It is possible to prove ownership of a given private/public key pair without disclosing any information about the private key.
There are 2^256 combinations of public and private keys. That number is larger than the number of atoms in the observable universe. To brute force, a private key is statistically improbable which makes your private/public key pair secure and safe.

Creation of Bitcoin address from scratch
In order to create a Bitcoin address, a private key, which is a randomly generated number, is multiplied using an elliptic curve to produce a publik key. Generated public key is then put through both SHA-256 and RIPEMD-160 hashing algorithms.
1A = RIPEMD-160( SHA-256(K) )23where45A - Encrypted public key6K - Public key
The use of the SHA-256 and RIPEMD-160 hashing algorithms for the creation of a Bitcoin address gave one big advantage: shorter addresses. A public key is 256 bits long whereas, the hashed version of the Bitcoin address is 160 bits long.
As we can see, the SHA-256 hashing algorithm is a core part of the Bitcoin protocol, but it is not enough. Using additionally RIPEMD-160 is like psychopath vibe - so needed in this kind of systems.
The. World. Is. Crazy. LITERALLY.
But only the truth is interesting.
Software engineering versus cryptographers

Random fact 1: The inventor of SHA-2 (Secure Hash Algorithm 2) is United States National Security Agency (NSA), their work was published publicly in 2001.
Random fact 2: NSA advises dropping C/C++ and moving to memory-safe languages. It’s something that large industry players were saying a long time ago. Nevertheless, it’s good to see NSA supporting the idea.

PS. In the header of the post is a picture of Marian Rejewski - the great Polish code breaker, the author of bombe decryption machine built in Bletchley Park. Marian Rejewski together with Jerzy Różycki and Henryk Zygalski developed techniques to decrypt the German machine ciphers during World War II.